proprietà delle funzioni derivabili in R
Teoremi
Teorema (operazioni con derivate)
Siano f , g : I → R , x 0 ∈ I ,
siano f , g derivabili in x 0 ,
allora f + g , f − g , f ⋅ g e, se g ( x 0 ) = 0 , g f sono derivabili
e
( f ± g ) ′ = f ′ ± g ′
( f ⋅ g ) ′ = f ′ ⋅ g + f ⋅ g ′ (regola di Leibniz)
( g f ) ′ = g 2 f ′ ⋅ g − f ⋅ g ′
Dimostrazione
R x 0 f + g ( x ) = x − x 0 ( f ( x ) + g ( x )) − ( f ( x 0 ) + g ( x 0 )) = x − x 0 f ( x ) − f ( x 0 ) + x − x 0 g ( x ) − g ( x 0 ) = R x 0 f ( x ) + R x 0 g ( x )
quindi se esiste finito x → x 0 lim R x 0 f ( x ) e x → x 0 lim R x 0 g ( x ) ,
allora esiste finito x → x 0 lim R x 0 f + g ( x ) e vale f ′ ( x 0 ) + g ′ ( x 0 )
Per la moltiplicazione:
R x 0 f ⋅ g ( x ) = x − x 0 ( f ( x ) ⋅ g ( x )) − ( f ( x 0 ) ⋅ g ( x 0 )) =
= x − x 0 f ( x ) ⋅ g ( x ) − f ( x ) ⋅ g ( x 0 ) + f ( x 0 ) ⋅ g ( x ) − f ( x 0 ) ⋅ g ( x 0 ) =
= f ( x ) ⋅ ( x − x 0 g ( x ) − g ( x 0 ) ) + g ( x 0 ) ⋅ ( x − x 0 f ( x ) − f ( x 0 ) ) =
= f ( x 0 ) ⋅ g ′ ( x 0 ) + g ( x 0 ) ⋅ f ′ ( x 0 )
f ( x ) diventa f ( x 0 ) perché f derivabile ⇒ f continua
quindi x → x 0 lim R x 0 f ⋅ g ( x ) = f ( x 0 ) ⋅ g ′ ( x 0 ) + g ( x 0 ) ⋅ f ′ ( x 0 )
Analogamente per la divisione.
□
Teorema (derivata della funzione inversa)
Sia f : I → J iniettiva, x 0 ∈ I ,
f sia derivabile in x 0 con f ′ ( x 0 ) = 0
Allora f − 1 è derivabile in f ( x 0 ) e si ha
( f − 1 ) ′ ( f ( x 0 )) = f ′ ( x 0 ) 1
Dimostrazione
Considero R f ( x 0 ) f − 1 ( y ) = y − f ( x 0 ) f − 1 ( y ) − f − 1 ( f ( x 0 )) = y − f ( x 0 ) f − 1 ( y ) − x 0
devo calcolare y → f ( x 0 ) lim y − f ( x 0 ) f − 1 ( y ) − x 0
cambio la variabile nel limite
x = f − 1 ( y )
y = f ( x )
se y → f ( x 0 )
allora x → x 0
x → x 0 lim f ( x ) − f ( x 0 ) f − 1 ( f ( x )) − x 0 = x → x 0 lim f ( x ) − f ( x 0 ) x − x 0 = x → x 0 lim x − x 0 f ( x ) − f ( x 0 ) 1 = f ′ ( x 0 ) 1
□
Teorema (derivata composta)
Sia f : I → R , sia g : J → R ,
siano f , g derivabili,
allora ( f ∘ g ) ′ = f ′ ( g ( x )) ⋅ g ′ ( x )
Dimostrazione
Definisco h ( x ) = ( f ∘ g ) ( x ) = f ( g ( x )) ,
inizio dalla definizione di derivata
h ′ ( x ) = R x 0 h ( x ) = x → x 0 lim x − x 0 h ( x ) − h ( x 0 ) =
= x → x 0 lim x − x 0 f ( g ( x )) − f ( g ( x 0 )) = x → x 0 lim x − x 0 f ( g ( x )) − f ( g ( x 0 )) ⋅ g ( x ) − g ( x 0 ) g ( x ) − g ( x 0 ) =
= x → x 0 lim g ( x ) − g ( x 0 ) f ( g ( x )) − f ( g ( x 0 )) ⋅ x − x 0 g ( x ) − g ( x 0 ) = R g ( x 0 ) f ( g ( x )) ⋅ R x 0 g ( x ) = f ′ ( g ( x )) ⋅ g ′ ( x )
□
Risorse