gruppo diedrale

Definizione

Il gruppo diedrale è il gruppo di simmetrie di un poligono regolare di lati. Esso consiste di:

  • rotazioni
  • riflessioni

per un totale di elementi.

Elementi del gruppo

dove:

  • = rotazione di radianti
  • = riflessione rispetto ad un asse di simmetria
  • (elemento neutro)

Ordine del gruppo

Esempi

- Triangolo equilatero

  • 6 elementi: 3 rotazioni + 3 riflessioni
  • Rotazioni: , ,
  • Riflessioni: rispetto alle 3 altezze

- Quadrato

  • 8 elementi: 4 rotazioni + 4 riflessioni
  • Rotazioni: , , ,
  • Riflessioni: rispetto alle 2 diagonali e alle 2 rette per i punti medi

- Pentagono regolare

  • 10 elementi: 5 rotazioni + 5 riflessioni

Proprietà

  • Non abeliano per
  • Presentazione:
  • Sottogruppo ciclico delle rotazioni: di ordine

Risorse