altri limiti notevoli dimostrati in R
Teorema
a>1,k∈R
x→+∞limxkax=x→+∞limx(ak1)xk=+∞
poiché x→+∞limx(ak1)x=+∞
□
a>1,k∈R
x→−∞limxkax
y=−x
x→+∞lim(−y)ka−y=x→+∞limay(−1)klimitatoyk=0
□
a>1
x→+∞limxlogax
y=logax
x=ay
x→−∞limay⋅t=0
come dimostrato prima, prendendo K=1
□
x→0+limxlogax
y=logax
x=ay
x→−∞lim(a21)y⋅y=0
□
x→+∞limxlogax
y=logax
x=ay
y→+∞limayy
z=−y
z→+∞lim−zaz=0
□
nlim(1+n1)n=e
x→+∞lim(1+x1)x=?e
n=[x]
[x]≤x<[x]+1
[x]+11<x1≤[x]1
1+[x]+11<1+x1≤1+[x]1
(1+[x]+11)[x]<(1+x1)x<(1+[x]1)[x]+1
(1+n+11)n<(1+x1)x<(1+n1)n+1
1+n+11(1+n+11)n<(1+x1)x<(1+n1)(1+n1)n
11+n+11(1+n+11)ne<(1+x1)x<1(1+n1)e(1+n1)n
□
x→−∞lim(1+x1)x
y=−x
y→+∞lim(1+−y1)−y=y→+∞lim(1+−y1)y1=y→+∞lim(1+−y11)y=y→+∞lim(−y−y+11)y=y→+∞lim(y−1y)y=y→+∞lim(y−1y+1−1)y=y→+∞lim(1+y−11)y=y→+∞lim(1+y−11)y−1(1+y1)=e⋅1=e
□
x→0limxlog(1+x)=x→0limlog((1+x)x1)=loge=1
□
x→0limxex−1
y=ex−1
x=log(1+y)
y→0limlog(1+y)y=1
□
x→0limxax−1=x→0limxexloga−1⋅logaloga=1⋅loga=loga
□
x→0+limxx=x→0+limexlogx=e0=1
□
Risorse